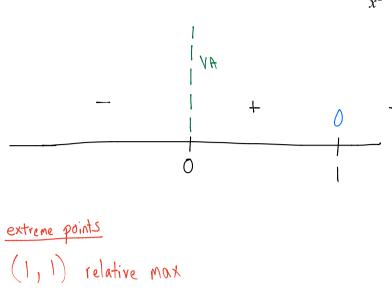

The Quotient Rule (Part 2)

Name Solutions

Find the extreme values of the rational function as well as the equation of the tangent line at a given point when asked. (2 - 1)(1 -


b) Find the equation of the tangent line at x = 4

$$M_{T} \Rightarrow pluq = 4 \text{ into } y' \Rightarrow M_{T} = \frac{2(4)^{2} - 4(4) - 8}{(2(4) - 3)^{2}} = \frac{2(16) - 24 - 8}{25} = \frac{0}{45} = 0$$

$$point \Rightarrow pluq = 4 \text{ into } y = \frac{4^{2} + 4}{2(4) - 3} = \frac{20}{5} = 4$$

$$Y = 4$$

2) a) Find the extreme values for the graph of $y = \frac{2x-1}{x^2}$

$$y' = \frac{\chi^{2}(2) - (2x-1)2\chi}{\chi^{4}}$$

= $\frac{2\chi^{2} - 4\chi^{2} + 2\chi}{\chi^{4}} = \frac{-2\chi^{2} + 2\chi}{\chi^{4}} = \frac{-2\chi(x-1)}{\chi^{4}}$
= $\frac{-2(x-1)}{\chi^{3}} = 0$ or undefined
-2(x-1)=0 x=1
 $\chi^{3} = 0$ $\chi = 0 \Rightarrow VA$
x-1 = 0 x = 1

b) Find the equation of the tangent line at
$$x = 1$$

 $M_T \Rightarrow pluq \ x = 1$ into $y' \Rightarrow M_T = \frac{-2(1-1)}{(1)^4} = \frac{0}{1} = 0$
 $y = 1$
 $y = 1$
 $y = 1$
 $y = 1$
 $y = 1$

3) Find the extreme values for the graph of
$$y = \frac{x^3 - 7}{x - 3}$$
 $\int = \chi^3 - 7$ $q = \chi - 3$
 $y' = \frac{3x^3(\chi - 3)^{-1}(\chi^{3} - 7)}{(\chi - 3)^{-1}} = \frac{3x^3 - 9x^2 - \chi^3 + 7}{(\chi - 3)^{-1}}$ $f' = 3x^2$ $g' = 1$
 $= \frac{2x^3 - 9x^2 + 7}{(\chi - 3)^{-1}} = 0$ or undef
 $y = 3$
 $2x^3 - 9x^2 + 7 = 0$ or undef
 $y = 3$
 $y' = 0$ or undef
 $y = 3$
 -0.812 1 -0.812
 $\chi = -0.812, 1, 4.311$ Extreme Values: $(-0.812, 1.977)$ rol min $(1,3)$ rol max
 $(4.312, 55.773)$