Determine if x-7 is a factor of x^3-x^2+x-1

Watch this. Can you figure out what's going on?

Determine if x-7 is a factor of $1x^3-1x^2+1x-1$

Let's try this again but slowly...

the coefficients of the polynomial

Start with the original coefficient

Multiply it by the number you're plugging in (7) and add the result to -1

This method is called Synthetic Division

And here's why...

Determine if x-7 is a factor of x^3-x^2+x-1

What this tells us is that if we try to factor x - 7, we get

$$x^2 + 6x + 43$$
 With a remainder of 300

And where there's a remainder, it is not a factor

It is also called <u>Synthetic</u> <u>Substitution</u> because...

$$f(x) = x^3 - x^2 + x - 1$$

$$f(7) = 300$$

So we can find function values using this method which is why it is also called <u>Synthetic</u>

<u>Substitution</u>

How many roots (zeros) does $y = x^3 - x^2 + x - 1$ have?

In other words, what value(s) for x will give us y = 0 when we plug them in?

Here is where Synthetic Substitution can help

$$0 = x^3 - x^2 + x - 1$$

After setting y = 0, we could use grouping to factor this and get

$$0 = (x-1)(x^2+1)$$

We could also use Synthetic Substitution since plugging in 1 would be so easy to do

We are going to choose 1 as our root since it is very easy to check if this is a good guess

Remember...

Start with the original coefficient

Multiply by 1 and add to the next coefficient

Repeat the process and if your remainder is 0, then (x - 1) is a factor

$$y = x^3 - x^2 + x - 1$$

 $y = (x - 1)(x^2 + 1)$

Notice something about this term

descending order beginning with a degree of 2 (one smaller than what we started with)

Still not sure?

Let's do another one then...

$$y = 1x^3 + 1x^2 - 4x - 4$$

That 1 is not a root so (x - 1) is not a factor

It does however mean that (1, -6) is a point on the graph of $y = x^3 + x^2 - 4x - 4$

Still not sure?

Let's go back and try -1

$$y = x^3 + x^2 - 4x - 4$$

Which means what?

That
$$-1$$
 is a root so $(x + 1)$ is a factor

and so

$$x^3 + x^2 - 4x - 4 = (x+1)(x^2 - 4)$$

Since we now know that

$$x^3 + x^2 - 4x - 4 = (x + 1)(x^2 - 4) = (x + 1)(x - 2)(x + 2)$$

Let's go back and try 2 since we know it will work

$$y = x^{3} + x^{2} - 4x - 4$$

$$2 \quad 1 \quad 1 \quad -4 \quad -4$$

$$- \quad \frac{2}{3} \quad \frac{6}{2} \quad \frac{4}{0}$$

$$/ \quad / \quad /$$

$$(x-2)(x^{2} + 3x + 2)$$

Which means what?

That 2 is a root so (x - 2) is a factor

and that

$$x^3 + x^2 - 4x - 4 = (x - 2)(x + 2)(x + 1)$$

Show that -2 is a root of $y = x^4 - 16$

$$y = (x + 2)(x^3 - 2x^2 + 4x - 8)$$

Let's reduce this all the way

$$\frac{2}{1}$$
 $\frac{0}{0}$ $\frac{8}{0}$

$$y = (x + 2)(x - 2)(x^2 + 4)$$