Area Formulas

Find the area of this kite

Note that the upper half is a triangle with base is d_2 and height $\frac{1}{2}d_1$

The area of this upper triangle is
$$A = \frac{1}{2}bh = \frac{1}{2}d_2\left(\frac{1}{2}d_1\right) = \frac{1}{4}d_2d_1$$

The area of the kite is just twice the area of the triangle so $A_{kite} = \frac{1}{2}d_1d_2$

Is congruent to this right triangle

$$A = ab$$

We know the area of a rectangle

What about a parallelogram?

Once we establish the height of the triangle, the area of this parallelogram is

b

$$A = ab$$

$$A = ab$$

We know the area of a rectangle

What about a parallelogram?

Once we establish the height of the triangle, the area of this parallelogram is

$$A = ab$$

The trick would be finding the length of *a* since the diagonal *c* would be different

$$\theta = 30^{\circ}$$

Why?

In the case of a hexagon, it would take 12 of these right triangles to fill the entire hexagon and since the central angles add up to 360°...

So what can we do with this info?

$$\theta = 30^{\circ}$$

If the perimeter of this hexagon is 24, find the area

$$a = \frac{2}{\tan 30^{\circ}} = \frac{2}{1/\sqrt{3}} = 2\sqrt{3}$$

$$A = 12\left(\frac{1}{2}ba\right)$$

$$A = 12\left(2\sqrt{3}\right) = 24\sqrt{3}$$

Important to remember when finding the area of any regular polygon

$$\theta = 30^{\circ}$$

$$\theta = \frac{360^{\circ}}{14} \approx 25.714^{\circ}$$

$$\theta = \frac{360^{\circ}}{16} = 22.5^{\circ}$$

How would we find the area of this trapezoid?

If we attach an inverted identical trapezoid we get a parallelogram

 $A = h(b_1 + b_2)$ Since the trapezoid is half of this parallelogram

$$A_{trap} = \frac{1}{2}h(b_1 + b_2)$$

So to recap:

a a

A = ab

$$A_{triangle} = \frac{1}{2}bh$$

$$A_{circle} = \pi r^2$$

$$A_{regpoly} = \frac{1}{2}aP = \frac{1}{2}\frac{b}{\tan\theta}P$$

$$b_1$$

$$A_{trap} = \frac{1}{2}h(b_1 + b_2)$$

$$b_2$$