Section 2-1: Conditional Statements

Conditional

- A statement that can be written in *If-then* form
- symbol: If p, then $q p \rightarrow q$
- If I let go of the pencil then it will fall

Converse

- The statement formed by *exchanging* the *hypothesis* and *conclusion* of the conditional statement
- symbol: <u>q</u> --> <u>p</u>
- if the pencil falls then I let go of it

Inverse

- The statement formed by *negating* the *hypothesis* and *conclusion* of the conditional statement
- symbol: ~*p* --> ~*q*
- if I don't let go of the pencil then it won't fall

Contrapositive

- The statement formed by *exchanging <u>AND</u> negating* the *hypothesis* and *conclusion* of the conditional statement
- symbol: ~*q* ---> ~*p*
- If the pencil does not fall then I didn't let go of it

If I let go of the pencil then it will fall.

1. If the pencil doesn't fall then I did not let go of it.

- 2. If the pencil falls then I let go of it.
- 3. If I don't let go of the pencil then it will not fall.

A) converse

B) inverse

C) contrapositive

Truth Value

1. If Leo is late, he gets detention.

2. If Leo is not late, he doesn't get detention

3. If Leo gets detention, he was late

4. If Leo doesn't get detention, he was not late.

A) converse B) inverse C) contrapositive

Biconditional Statements

can be written in the form "*p* if and only if *q*",
which means "if *p*, then *q*" and "if *q*, then *p*"

- are *reversible*
- contain the *conditional* AND *converse* statements
- "if and only if" shorthand: iff

Biconditional Statements

An angle is a right angle if and only if it measures 90 degrees

If an angle is a right angle, it measures 90 degrees

If an angle measures 90 degrees, it is a right angle