Midsegments

Notice the location of these two points

How would you locate them?

Midpoint Formula

The segment connecting these two midpoints is called the *Midsegment*

Notice the way in which it divides the triangle

Through any triangle can be drawn three *Midsegments*

Some things to know about midsegments:

$$AB = 2FE$$

$$BC = 2DF$$

$$AC = 2DE$$

$$\frac{\overline{AB} \parallel \overline{FE}}{BC \parallel DF} \\
\overline{AC \parallel DE}$$

Recall what parallel lines tell you about the relationship among certain angles

 $\overline{DE}, \overline{EF}, \overline{DF}$ are all midsegments

Find the other lengths and angles

Notice all the parallel lines

Corresponding Angles

 $\overline{DE}, \overline{EF}, \overline{DF}$ are all midsegments

Find the other lengths and angles

Notice all the parallel lines

Since the midsegment is a bisector...

Alternate Interior Angles

Completing the middle triangle

Recall the Midpoint Formula

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

$$\left(\frac{-3+0}{2}, \frac{-2+4}{2}\right) = \left(-\frac{3}{2}, \frac{2}{2}\right)$$

$$\left(\frac{-3+2}{2}, \frac{-2-1}{2}\right) = \left(-\frac{1}{2}, -\frac{3}{2}\right)$$

The last midpoint will be discussed in class next time