The Product Rule Standard 7f-Find the derivative of a product of two functions

It's very simple Remember how the Quotient Rule works? If you have two functions F and g

The Product Rule is even easier to remember

$$\frac{d}{dx}(f \cdot g) = f' \cdot g + g' \cdot f$$

 $\frac{d}{dx}(f \cdot g) = f' \cdot g + g' \cdot f$

Example: $f(x) = e^{3x}$ $g(x) = 2x^3 - 3x^2 + 5$

 $f'(x) = 3e^{3x}$ $g'(x) = 6x^2 - 6x$

 $f \cdot g = \left(2x^3 - 3x^2 + 5\right)e^{3x}$

 $\frac{d}{dx}(f \cdot g) = f' \cdot g + g' \cdot f$ $= 3e^{3x} \left(2x^3 - 3x^2 + 5\right) + \left(6x^2 - 6x\right)e^{3x}$

$=3e^{3x}\left(2x^{3}-3x^{2}+5\right)+\left(6x^{2}-6x\right)e^{3x}$

By the way, this can and should be simplified

Because of course we will be doing sign patterns with derivatives like this eventually

$$= e^{3x} \left[3 \left(2x^3 - 3x^2 + 5 \right) + \left(6x^2 - 6x \right) \right]$$
$$= e^{3x} \left[\left(6x^3 - 9x^2 + 15 \right) + \left(6x^2 - 6x \right) \right]$$
$$= e^{3x} \left[6x^3 - 3x^2 - 6x + 15 \right]$$