

In a 30-60-90 triangle, the side opposite the 30° angle is half the hypotenuse

The Pythagorean Theorem tells us that the length of this side is

$$x = y$$

$$x^{2} + y^{2} = 1$$

$$x^{2} + x^{2} = 1$$

$$2x^{2} = 1$$

$$x = y = \frac{\sqrt{2}}{2}$$

$$\theta = 45^{\circ}$$

Note that 60° is the <u>reference</u> angle so we use the same values as we would for 60° except we need to take into account the quadrant

$$\sin 60^{\circ} =$$

$$\cos 60^{\circ} =$$

$$\sin 120^{\circ} =$$

	0°	30°	45°	60°	90°	120°	135°	150°	180°
θ^{rad}	$\mathrm{O}^{\mathrm{rad}}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sinθ	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
cos θ	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	$-\frac{\sqrt{1}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{4}}{2}$

	0°	30°	45°	60°	90°	120°	135°	150°	180°
θ^{rad}	O ^{rad}	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sinθ	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
cos θ	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	$-\frac{\sqrt{1}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{4}}{2}$

	0°	30°	45°	60°	90°	120°	135°	150°	180°
θ^{rad}	O ^{rad}	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sinθ	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
cos θ	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	$-\frac{\sqrt{1}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{4}}{2}$
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

$$\tan 30^\circ = \frac{y}{x} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$
 which can also be written as $\frac{\sqrt{3}}{3}$ but is not required

$$\tan 45^\circ = \frac{y}{x} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1$$