
The KQ cola company wants to use as little aluminum per can of 
cola as possible for a 355 cm3 cylindrical can.

What this problem is really asking for is the minimum surface area 
for the can.
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We need to eliminate 
one of these variables 
through substitution

A = 2πr2 + 2πrh

So we are trying to 
minimize this function:

Since we also know that

V = 355cm3 = πr2h
355
πr2

= h

A = 2πr2 + 2πr 355
πr2

A = 2πr2 + 710
r

Now let’s differentiate

Since we’re trying to minimize the 
area the only domain restriction 
here is that r > 0
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r ≈ 3.837cm

h ≈ 7.674 cm

A ≈ 277.545cm2

A sign pattern of the derivative 
confirms that it represents a 
minimum value for A
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So the minimum area possible is:


