Sample Means: \bar{x}

Sampling Distributions

Sample Proportions: \hat{p}

 $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$

Normality

1. $np \ge 10$, 2. $n(1-p) \ge 10$

 $\mu_{\hat{p}} = p$

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow \overline{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Normality

$$\Rightarrow \bar{x} \sim N(\mu, \sqrt[6]{\sqrt{n}})$$

1.
$$x \sim N$$

2.
$$n \ge 30 \text{ (CLT)}$$

Both 1 AND 2 must happen to assume normality

Only 1. OR 2. needs to happen to assume normality

$$\hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right) \Leftarrow$$

Sampling distribution = what shape is the graph of your data?

$$x \sim N(\mu, \sigma)$$

$$x \sim B(n,p)$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

$$x \sim G(p)$$

$$\hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

$$x \sim U$$

parameter
$$p, \mu, \sigma$$
 come from a population

Vocab/Extras

statistics \hat{p}, \bar{x}, s come from a samples

Statistics estimate parameters

Differences of Sample Means:

Sampling **Distributions**

Differences of Sample Proportions:

$$\mu_{\bar{x}\pm\bar{y}} = \mu_x \pm \mu_y$$

$$\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$

$$\sigma_{\bar{x}\pm\bar{y}} = \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}$$

Normality

1. $x \sim N$ $y \sim N$

$$\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Normality

$$n_1 p_1 \ge 10$$
 $n_2 p_2 \ge 10$

$$n_2 p_2 \ge 10$$

$$n_1(1 - p_1) \ge 10$$
 $n_2(1 - p_2) \ge 10$

2. $n_x \ge 30$ and $n_y \ge 30$ (CLT)

3. Ten percent rule for both populations

Only 1. OR 2. needs to happen to assume normality

Both 1 AND 2 must happen to assume normality

Sampling distribution = what shape is the graph of your data?

$$x \sim N(\mu, \sigma)$$

$$x \sim B(n,p)$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

$$x \sim G(p)$$

$$\hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

$$x \sim U$$

Vocab/Extras

parameter p, μ, σ come from a population

statistics \hat{p}, \bar{x}, s

come from a samples

Statistics estimate parameters